据市场信息反映,多数质量问题都与制造不良有关,可见工艺的重要性不容勿视。水泵零件的制造工艺变化多,但通过研究分析仍有规可循。工艺制订原则主要是:抓住关键——准确选择基准;把握重点——采用合理工装保证;决定方法——正确的工艺路线。依靠工艺人员的周密编制,结合操作者的现场经验集思广益,使水泵零件的制造达到设计要求,实现优质高产是完全可能的。
一、机械制造工艺的重要性:
优质产品来源于优秀的设计,更是依赖于优良制造的可靠保证,而优良制造取决于完善的加工工艺。只有选择了正确的加工工艺,才能制造出高精度产品,降低生产成本,提高生产效率,为企业创造良好的效益。水泵零件的制造因品种多、结构复杂、用料广泛,以致加工难度大,工艺质量不易控制。尤以单件、小批量,品种多变的生产模式,工序相对较为集中,更加要求操作者掌握较全面的机械制造专业知识,具有良好的综合素质。
水泵零件结构复杂,铸件占80%以上,主要为铸铁件、铸钢件和铸造不锈钢件;轴类零件较少,主要为优质碳钢、铬钢或不锈钢件。水泵零件的加工,因其具有水力流道,在考虑定位装夹基准时必须找正流道的正确位置。避免装配后造成压水室与叶轮流道偏斜、错位、间隙不均甚至碰擦,影响产品质量。为了保证零件制造精度,需要设计相应的工装,并合理安排工艺流程控制工艺因素。现针对生产中容易出现的问题将工件装夹、加工要求、典型零件加工工艺浅析如下:
二、水泵零件的机械制造工艺:
(一)、工件的装夹:
1、操作者必须在熟悉产品图样、工艺文件和工艺装备的基础上从事作业生产,避免盲目生产造成零件报废;
2、在机床工作台面上安装夹具时,要擦净其定位基准面,并找正加工要求的相对位置;
3、工件装夹前应将其定位面、夹紧面,夹具的定位面擦拭干净,不得有毛刺,保证定位精度;
4、按工艺规定的定位基准装夹,定位基准符合以下原则:
(1)、尽可能使设计基准、加工基准、检验基准重合,便于加工尺寸链的换算和测量;
(2)、尽可能使各加工面采用同一定位基准,容易保证形位公差,如平行度、同心度、垂直度等;
(3)、粗加工基准选取应结合后续工序的定位要求,有利于提高加工精度;
(4)、精加工工序定位基准应是巳加工表面,使定位准确、加工精度高;
(5)、选择的定位基准必须使工件定位、夹紧方便,加工时稳定可靠。
5、夹紧工件夹紧力的大小适当,夹紧力的作用点应通过支承面,尽可能靠近加工面;对刚性较差或是悬空的工件,应增加辅助支承以增强刚性;
6、夹紧精加工面应以铜皮作软垫保护,不损坏巳加工表面;
7、加工面应尽可能靠近床头箱,选取适当刀具增强系统刚性,提高加工表面粗糙度。
(二)、加工要求:
1、操作者应根据图样技术要求和工艺文件的规定,及工件材质、精度要求、机床、刀具、夹具等情况,正确选择工艺路线,合理选择切削用量;
2、对有公差要求的尺寸在加工时应尽量按中间公差加工;
3、工艺规程未规定的粗加工表面粗糙度应不大于Ra25;下道工序需淬火的表面粗糙度不大于Ra6.3;铰孔前的表面粗糙度不大于Ra12.5;磨削前的表面粗糙度应不大于Ra6.3;
4、粗加工的倒角、倒圆、槽深应按精加工余量加大或加深,保证精加工后达到设计要求;退刀槽切忌过深和锐角,以避免应力集中;
5、图样或工艺中未规定的倒角和自由尺寸应按相关规定制作;
6、本道工序产生的毛刺应在本工序去除;
7、在大件加工过程中,应时常检查工件是否松动,以防影响加工质量或发生事故;
8、粗、精加工在同一工序进行时,应考虑热胀冷缩、加工应力等因素影响最后尺寸精度;
9、切削过程中,若加工系统发出不正常声音或粗糙度突然变坏,应立即退刀停车检查;
10、正确使用量具,测量前注意校准,检验时切忌用力过大造成量具损坏或增大测量误差;
11、加工后的工件应在规定的工位器具上摆放,以免损伤加工表面;
12、加工后的工件应经专职检验员检验合格后转入下道工序。
(三)、典型零件的加工工艺分析:
1、泵体加工工艺:
泵体加工工艺重点是保证装配基准孔面与压水室流道的正确位置。泵体加工的设备主要为车床、立车、镗床等,其中卧式车床适合小泵体的加工,生产效率虽高,但不便找正加工面与流道的相对位置,常造成装配基准孔与流道中心面不垂直及相对位置不准确。所以大泵体多在立车和镗床上加工,工件装夹在工作台面上,可用垫铁校正流道位置,压紧方便;并且镗床工作台可旋转,能在一次装夹中加工多个侧面。如管道离心泵泵体使用镗床的工艺路线为:(1)、以底脚面垫准找正流道后夹紧,分别车进出口法兰,保证了法兰平行且与流道中心重合;(2)以进水口法兰立于工作台上找正流道后压紧,车准叶轮装配端各孔面;然后工作台旋转180度后锁紧车好底脚面,保证了装配孔面与流道的位置精度;(3)、按图样完成其它工序。
2、叶轮加工工艺:
叶轮加工主要集中在车床上完成,常见工艺路线为:(1)、用四爪夹叶轮外径或后口环,以流道中心或前后盖板流道面作轴向找正基准及叶轮进口直径作径向找正后夹紧,粗车叶轮进口端口环留精车余量1-2mm,及前板面;本工序保证叶轮流道的相对位置;(2)、三爪夹巳车叶轮口环找正工件后夹紧,将后口环、外径、内孔、后盖板车好,保证了内孔、外径、口环的同心度要求;(3)、用心轴以叶轮内孔定位,精车叶轮前口环,保证前口环与内孔的同心度要求;(4)、三爪夹后口环或外径找正内孔插键槽,保证键槽对称度;(5)、钻叶轮平衡孔,保证大小并均分叶片间距,不损伤叶片;(6)、做平衡试验。
3、泵盖(或电机支架)加工工艺(管道泵为例):
泵盖零件结构通常一端止口连接电机,另一端台阶连接泵体。两端安装配合孔面无法在一次装夹中同时加工完成,如不同心将会出现质量问题。常见加工工艺为:(1)用四爪夹住一端(如泵体连接端)找正、把另一端粗精车好;(2)在车床上安装校准车胎尺寸,将巳车一端(电机安装止口)配合孔装入车胎内找正压紧、粗精车泵体连接端尺寸,这样两端的同心度完全可以保证。然后用钻模钻好各处螺栓连接孔。
4、轴加工工艺:
轴类零件加工中细长轴加工较困难,采用合理的加工路线辅以适当的工装(如中心架),可以达到设计要求。轴加工主要以中心孔作定位基准,两端外圆不能在一次装夹中同时完成,精加工为保证径向跳动要求通常采用两头顶上鸡心夹的装夹方法,高精度的配合面常用磨床完成。
艺路线为:(1)、粗车,分别钻两端中心孔,夹一头顶一头将外圆粗车成、留余量,转入热处理工序(如调质);(2)半精车,对热处理后的轴一定要修复中心孔,夹一头顶一头进行半精车,留精车余量0.5-1mm,并完成轴上的螺纹、退刀槽等加工,注意车退刀槽切忌尖角造成应力集中,影响轴的强度;(3)、精加工,对于要求不高的零件采用两头顶上鸡心夹,将配合部位外圆精车成;若配合面要求精度高、批量生产的轴,留磨加工余量0.3-0.6mm;(4)、铣键槽,注意保证对称度;(5)、磨外圆,采用两头顶上鸡心夹将配合面磨成。
二、双阀芯换向阀的两种基本控制方法:
由于双阀芯换向两油口控制的灵活性,两油口可分别采取流量控制、压力控制或流量压力控制。正面介绍两种简单的控制策略。
1、负载方向在整个工作过程中保持不变
我们知道,对于汽车起重机、挖掘机、装载机等而言,其液压缸在整个工作过程中负载方向始终维持不变。下面以起重机变幅液压缸为例来探讨双阀芯的控制策略。
1)、起重机变幅缸在工作过程中其受力,负载方向始终保持不变,因此我们可以采取液压缸有杆控用压力控制、无杆腔用流量控制的控制策略。
2)、无杆腔流量控制是通过检测连接到无杆腔侧阀前后两侧的压差,再根据所需流入或流出流量的多少,计算出阀芯开口大小;有杆腔侧采用压力控制,使该侧维持一个低值的压力,使得更加节能、高效。
3)、由于我们在无杆腔采用了流量控制,因此原控制系统中所用的平衡阀可用一个液控单向阀来代替。这样可消除因平衡阀所带来的系统不稳定,从而提高系统稳定性。
2、负载方向在工作过程中发生改变
1)、在这种情况下,采取“进油侧压力控制,出油侧流量控制”,在液压缸有杆腔侧用压力控制,无杆腔侧有流量控制。
2)、负载方向不变,由于出油侧采取了流量控制,我们可将双向平衡阀用液控单向阀来替换,从而提高系统的稳定性。进油侧用压力控制器来维持一个较低的参考压力,一方面提高系统效率,另一方面使系统不发生气穴。
3)、为了使负载方向变化的工作机构能得到很好控制,另外一个PI控制器将被运用到有杆腔的压力控制器中,当负载方向改变后,无杆腔的压力将减小;如果仍将有杆腔维持一个很低的压力,当负载很大时,液压缸将向反方向运动。此时我们可用所增加的PI控制器监视无杆腔压力的变化,当PI控制器检测到无杆腔压力低于所设定的参考值时,将提高有杆腔压力控制器所设定的压力,从而保证系统的正常工作。
3、Ultronics液压控制系统
Ultronics公司是一家集设计、研究和制造的电子液压技术公司。其液压控制系统采用了CAN总线通信,双阀芯控制技术,通过两个阀芯的组合控制,可实现对执行机构多种控制,以提高系统的稳定性,降低能源损耗,同时还可使得系统更加简单,降低成本,加快产品开发速度,这些都是传统的电子系统所不能做到的。
Ultronics控制系统的硬件一般由操纵手柄、电控单元ECU、调节阀、双阀芯液压阀组和外接传感器或开关等组成,其间通过CAN总线通信,液压阀组为电控系统与液压系统的交汇点,系统的另一个重要组成部分就是软件。
手柄为光电非接触形式,最多可带4个比例输出或2个比例输出和最多5个开关。开关有比例式和自锁式供选择。其防护等级达到了IP67。手柄的延时特性、输出曲线和死区等可通过专用软件JoyVal进行修改。
电控单元ECU其供电压有12V和24V两种,25路和50路两种接口,提供模拟与数字输入、输出接口,同时该电控单元还提供了CAN信接口,使得系统可以接收传感器或控制信号或与其它系统进行连接。ECU中存储了系统控制所需的所有应用程序,该应用程序可将来自于手柄或连接于ECU上的其它器件和信号(如传感器检测信号、发动机控制系统信息等),经处理后转换成各个阀芯动作的指令。
Ultronics控制系统的关键在于其独特的双阀芯控制技术,每片阀有两个阀芯,相当于将一个三位四通阀变成两个三位三通阀的组合,两个阀芯既可单独控制,也可根据控制逻辑进行成对控制,并且两个工作油口都有压力传感器,每一个阀芯都有位置传感器,通过对传感信号的闭环控制可以分别对两路液压油的压力或流量进行控制,具有很高的控制精度,通过不同的组合可以得到许许多多的控制方案,以满足系统的需要。
每片阀都有两个完整的设置好的混合信号ASIC(模拟型专用集成电路)和一个RISC(精简指令处理器)。这些控制器给传感器提供激励和补偿、给控制传动装置提供动力、提供阀芯控制软件以及CAN总线通信。阀芯动作控制策略以及具体的参数可由用户根据被控执行元件的要求进行设置或修改。控制阀接收到指令后,其内嵌式处理器就运行阀芯动作控制软件实现设定的机能,多个阀间的功能协调是由ECU完成的,从而实现复杂的系统功能。这种分级控制方式使系统的应用具有非常好的灵活性,同时易于构建复杂的控制系统。
Ultronics控制系统功能的多样性是通过应用软件实现的,通过有针对性的编制控制软件。Ultronics控制系统可实现的功能是极其广泛的。履带挖掘机、轮式挖掘机、装载机等先进机型在操作舒适性、作业效率、作业成本消耗、故障诊断、环境保护等方面所做的努力,比如发动机状态与液压系统的适应控制、特定作业功能等,采用Ultronics系统都可实现。
总之,通过CAN总线通讯、独特的双阀芯结构和压力、位移传感器的应用以及压力或流量的闭环控制技术、Ultronics公司的电子液压控制系统使工程机械控制系统在功能的多样性、实现的灵活性、较低的性价比以及控制理念、维修模式等诸多方面都将引发一次革命性的变化。